Pop-up stores are becoming a popular channel for retailers to create a new revenue stream, generate buzz with customers, test product concepts, or unload excess inventory. Since the idea is to spin up the store quickly and then close it shortly thereafter, it doesn’t make sense to spend a lot of time on development. With the right Redis modules, you can create a robust customer experience without a lot of development effort.
This pop-up store demo illustrates a company that sells a single product and has 10,000 units available for purchase. Each customer can purchase one unit and the sale lasts only 10 minutes, so order processing must be instantaneous. The demo shows how to visualize data pipeline in real-time using Redis Streams, Redis Time Series, RedisGears and Redis Datasource with Grafana.
git clone https://github.com/redis-developer/redis-pop-up-store/
docker-compose up -d
Open http://IPAddress:3000 to access the grafana dashboard
Grafana query streams and Time-Series keys every 5 seconds to display samples using Grafana Redis Datasource.This Grafana dashboard displays:
StreamReader
 to watch all queue:
 keys and adding Time-Series samples# Add Time-Series
def tsAdd(x):
xlen = execute('XLEN', x['key'])
execute('TS.ADD', 'ts:len:'+x['key'], '*', xlen)
execute('TS.ADD', 'ts:enqueue:' + x['key'], '*', x['value'])
# Stream Reader for any Queue
gb = GearsBuilder('StreamReader')
gb.countby(lambda x: x['key']).map(tsAdd)
gb.register(prefix='queue:*', duration=5000, batch=10000, trimStream=False)
queue:complete
 stream# Complete order
def complete(x):
execute('XADD', 'queue:complete', '*', 'order', x['id'],
'customer', x['value']['customer'])
execute('XDEL', 'queue:customers', x['value']['customer'])
execute('DECR', 'product')
# Stream Reader for Orders queue
gb = GearsBuilder('StreamReader')
gb.map(complete)
gb.register(prefix='queue:orders', batch=3, trimStream=True)